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Summary: The C(18-28) CD-ring spiroketal subunit of the spongistatins, marine polyether macrolides with unprecedented 
antitumor activity, has been generated via a highly convergent and completely stereocontrolled sequence. Key operations 
include a one-flask dithiane bisalkylation and a metal-assisted spiroketal equilibration. © 1997 Elsevier Science Ltd. 

The spongistatins (e.g., 1 and 2, Scheme I), structurally unique sponge metabolites available only in miniscule 

amounts, are extraordinarily potent inhibitors of cancer cell growth. 1 In the first Letter in this series, 2 we described our 

overall synthetic strategy as well as the construction of a C(29-48) advanced intermediate. We now report a convergent, 

stereocontrolled approach to the synthesis of the C(18-28) CD-ring spiroketal building block 3. Key operations include a 

one-flask dithiane bisalkylation and a metal-assisted spiroketal equilibration. 
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directly install the C(25) TBS ether required for further elaboration. 4 

Synthesis of the CD-ring subunit 3 began with the generation of the C(24-28) epoxide (-)-66 from commercially 

available (S)-(+)-2,2-dimethyl-l,3-dioxolane-4-methanol [(+)-10; Scheme III]. O-Alkylation of (+)-10 with 4-bromobenzyl 

bromide followed by methanolysis of the isopropylidene group (HCI, MeOH; 90% yield, two steps) and Sharpless ring 

closure 7 (86% yield) afforded epoxide (-)-11.6 Addition of the higher-order cuprate 8 prepared from vinyllithium to (-)-11 and 

acylation of the resultant alcohol 
Scheme III 

with t-Boc anhydride then furnished 
1) BaH, 4-bromobenzyl B ~ . ~  
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6 o of (-)-13 with K2CO3 in methanol provided epoxide (-)-14 [54'/0 overall yield from (-)-11]. Hydroxyl protection as the TBS 

ether (76%) and removal of the p-bromo group via metal-halogen exchange (95%) completed construction of epoxide (-)-6. 6 

The C(18-23) dithiane (-)-7, required for the stepwise approach, was synthesized from homoallyiic alcohol (-)-15, 

prepared previously in connection with our acutiphycin synthesis 11 in four steps (30% overall yield) from (S)-(-)-malic acid. 

O-Methylation (Nail, Mel, 15-cr-5; 98%) followed 
Scheme IV 
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For the alternative one-pot protocol, epoxide (-)-9 was prepared from known epoxy alcohol (+)-1612 (Scheme V), 

the latter available in three steps from D-gtyceraldehyde acetonide. Scheme V 
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With the requisite epoxides (-)-6 and (-)-9 in hand, we implemented the one-pot bisalkylation tactic 5 (Scheme VI). 

Silyl dithiane 8 was metalated with t-BuLl in Et20 and alkylated with (-)-6; Brook rearrangement triggered by HMPA (0.5 
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equiv) and union with (-)-9 afforded the coupled product 
S c h e m e  VI 

in 72% yield. O-Methylation (Nail, Mel, 15-cr-5; 94%) 
la) t-BuU, Et.~O 

then completed the synthesis of (-)-5. 6 As expected, the -78 --,-45 oc. 1 h 
TBS9 0 
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desired spiroketal is outlined in Scheme VII. Removal of (2 equh0 Et20 
HMPA (0.5 equlv) 
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MeOH; 85%) furnished the tetrahydroxy precursor 

(+)-17. 6 Treatment with memuric perchlorate and calcium carbonate in aqueous acetonitrile removed the dithiane moiety 

and induced spiroketalization, affording as anticipated a mixture (2:1) of the undesired epimer (+)-186 and the spongistatin 

intermediate (-)-19. 4 To our delight, exposure of the crude mixture to perchloric acid in CH2CI2/CH3CN (10:1) effected 

complete conversion to (-)-19 (87% yield, two steps). Further experiments have revealed that residual Ca(ll) ions play a 

critical role in the isomerization; we are currently investigating possible complexation of Ca(ll) with (-)-19.14 Silylation of the 

primary hydroxyl in (-)-19 (BPSCI, imidazole, DMF; 83%) next provided (-)-20. The 1H NOE data 15 for (-)-20 were 

consistent with those reported by Kitagawa 16 and Fusetani, 17 providing the first evidence that the natural spiroketal 

configuration had been secured. Subsequently the relative stereochemistry of the derived (x,~-unsaturated ester (-)-216 

was vedfied by single-crystal X-ray analysis. 
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Final elaboration of the CD-ring spiroketal 3 began with selective pivalylation of the pdmary alcohol in (-)-19 (70% 

yield), followed by silylation of the C(25) secondary hydroxyl (89%; Scheme VIII). Replacement of the benzyl moiety with a 

TES group (92% yield, two steps) then provided (-)-22. 6 Tosylate (-)-236 was obtained in 87% yield via reductive cleavage 

of the pivalate (DIBAL, THF, -50 °C) and treatment with tosyl chloride. Installation of the C(18) iodide (Nal, imidazole, 

acetone, 50 °C) also led to removal of the TES ether, which was reintroduced (TESOTf, 2,6-1ut, THF, 0 °C) to furnish the 

C(18-28) spiroketal building block (-)-36 (76% yield, two steps). 
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In summary, we have completed a 
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